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In a recent paper in this Journal, Carreras & Capella 
(1994) present a concise and complete overview of 
current structural interpretations of the Hercynian seg- 
ment of the Pyrenean mountain range. As they point 
out, the persistence of conflicting tectonic interpre- 
tations largely stems from correlation problems between 
what appears as the macroscopically-dominant cleavage 
and lineation in different massifs. They present a new 
tectonic model, in which different structural styles in 
adjacent zones and at different crustal levels result from 
heterogeneous deformation and important late- 
Hercynian strike-slip movements. While acknowledging 
most of their interpretation as an important contri- 
bution, I would like to discuss some microstructural 
aspects that appear to pose a critical problem. 

Carreras & Capella (1994) interpret the presence of 
two separate foliations at different structural level 
(suprastructure and infrastructure): a steep main folia- 
tion in the suprastructure, which formed after a flat 
foliation in the infrastructure. They present this idea as a 
major step forward with respect to superseded interpre- 
tations by Seguret & Proust (1968), Matte (1969), de 
Sitter & Zwart (1960) and Zwart (1979), who originally 
assumed that the main foliation in the supra- and infra- 
structure is the same. The idea of a unique main-phase 
cleavage, however, was already disproved by Verhoef et 
al. (1984), van den Eeckhout (1986, 1990), Lister et al. 
(1986), van den Eeckhout & Zwart (1988)) de Bresser et 
al. (1986)) Pouget et al. (1988)) Kriegsman et al. (1989)) 
Kriegsman (1989a, 1989b), Gibson (1989,1991), Vissers 
(1992) and Aerden (1993) who showed by combined 
detailed structural mapping and microstructural analysis 
that the low-dipping foliation in the infrastructure (S3) 
post-dates an earlier steep schistosity (S2). This is the 
opposite time relationship to that in Carreras & Capellas 
(1994) model. However, no effort has been made to 
clarify this conflicting observation. 

The explanation is perhaps simple. The same authors 
who showed the flat-lying infrastructure foliation to be 
at least a second generation microstructure (S3 of Aer- 
den, 1994), also showed that this foliation was locally 
overprinted and folded by a heterogeneously-developed 
steep cleavage (S4), which locally is the main schistosity 

due to transposition of S3 and/or S2. In fact, there is 
evidence for two, still later but weaker crenulation, 
cleavages (S5 and S6 of van den Eeckhout 1986, in the 
Hospitalet Massif). Carreras & Capella (1994) have 
emphasised the S3-S4 relationship, but ignored the S3- 
S2 relationship, even though S2 forms the dominant 
foliation in large infra- and suprastructural zones (van 
den Eeckhout 1986, Pouget et al. 1988, Kriegsman et al. 
1989). 

Irrespective of how one prefers to interpret the tec- 
tonic significance of the flat-lying foliation, the fact that 
it overprints an earlier schistosity must be taken into 
account. The authors who recognized that S3 crenulates 
S2 favour a crustal extension origin, either of local 
extent, related to diapirism, or on the orogen scale. 
Crustal extension during D3 has been recently con- 
firmed by porphyroblast inclusion-trail data showing 
that S2 formed in a subvertical orientation (Aerden 
1993, 1994, 1995); its subsequent rotation and crenula- 
tion in the infrastructure implies a vertical shortening 
component. Carreras & Capella (1994)) nevertheless, 
prefer an origin for the flat foliation by progressive 
simple shearing during thrusting. Let us examine their 
arguments. 

Firstly, the flat foliation is locally overprinted by steep 
late-Hercynian foliations (S4), which is difficult to fit 
into a ‘late-erogenic extension’ model (Kriegsman et al. 
1989, Vissers 1992). However, this does not pose a 
problem for syn-erogenic extension (Aerden 1994, in 
press). Secondly, erogenic extension would require a 
switch in plate-tectonic setting for which little evidence 
exists. However, neither late- nor syn-erogenic exten- 
sion requires a switch in plate motion, as an orogen may 
undergo internal extension (thinning) due to gravi- 
tational instability, while plate convergence continues 
(Royden et al. 1983, Dewey 1988, Molnar & Lyon-Caen 
1988). In this light it is not difficult to explain a late phase 
of renewed orogen thickening and generation of a steep 
cleavage (S4) after gravitational equilibrium was re- 
stored, but plate convergence still continued. Their third 
argument is that (compressional) pre-cleavage folds and 
thrusts are common in upper levels (suprastructure), but 
would not be present in infrastructural domains. The flat 
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foliation in the infrastructure would therefore be 
synchronous with these structures and hence, inconsist- 
ent with a crustal extension. This reasoning is no longer 
valid when one recognizes that the flat foliation post- 
dates a steep penetrative cleavage (S2) in the infra- 
structure. 

Apart from this, pre-cleavage deformation has been 
documented in the infrastructure as well, although more 
difficult to recognize due to higher metamorphic grades 
and deformation intensities (e.g. den Brok 1989). This 
deformation occurs below a discordant conglomerate 
unit in the Cambro-Ordovician sequence and therefore 
is pre-Hercynian. Is it possible that at least some of the 
pre-cleavage deformation in the suprastructure is also 
pre-Hercynian? Another factor requiring caution is that 
the main-cleavage in the suprastr~lcture may not be 
everywhere S2, but locally an S4, or a syn-D4 reacti- 
vated S2. 

For the sake of objectiveness I should point out that an 
extensional interpretation of the flat-lying main foliation 
in the infrastructure also encounters problems. For 
example, this foliation does not always appear as a 
crenulation cleavage (S3) but commonly as a first schis- 
tosity (S2) in the metasediments. In the gneissic base- 
ment, a foliation predating the flat-lying main foliation 
has never been convincingly demonstrated either, yet 
where traced into the sedimentary cover, it may appear 
as a spaced crenulation cleavage overprinting an early 

schistosity (van den Eeckhout 1986). A possible expla- 
nation for these paradoxical observations is that folia- 
tions can become obliterated during subsequent 
deformation by two processes: (i) isoclinal crenulation 
and disruption, which destroys the pre-existing fabric; 
and (ii) progressive decrenulation and stretching of a 
pre-existing fabric, which obliterates the (younger) cre- 
nulation cleavage. Crenulation cleavage formation and 
subsequent destruction by the latter process may occur 
within a single deformation event as a pre-existing fabric 
rotates out of the incremental shortening, into the in- 
cremental extension field (Bell 1986; Davis 81 Forde 
1994, Aerden 1994). Both foliation-destroying pro- 
cesses can be responsible for the preservation of a single 
foliation despite a two-phase deformation history and 
whether such a foliation belongs to the first or second 
event can only be demonstrated from detailed analysis 
of relic microstructures in strain-protected zones (e.g. 
porphyroblasts). Coarse-grained gneisses unfortunately 
have shorter memory in this respect than more 
delicately-structured porphyroblastic metasediments. 

In conclusion, the Carreras & Capella (1994) model 
only considers two phases of penetrative cleavage for- 
mation in the Pyrenean Hercynides, whereas previous 
microstru~tural analysis indicates that there are at least 
three phases; two steep cleavage generations separated 
by a flat-lying foliation related to syn-erogenic crustal 
extension. Still later deformation structures (e.g. van 
den Eeckhout 1986) and the existence of late-erogenic 
Stephano-Permian basins may suggest a second, poss- 
ibly much weaker (post-erogenic) extension event 
(Vissers 1992). Thus, a single phase of plate collision is 

not inconsistent with a complex deformation history in 
an orogen, due to its dynamic response to changes in 
thermal and/or mechanical boundary conditions and the 
interplay between tectonic and gravitational forces. 
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